
Yan Ka, Chiu, EuroBSDcon 2023

Running and Distributing
FreeBSD Containers

Overview

• Quick introduction to container / OCI

• FreeBSD quirks and features

• Xc features and demo

• Future work

Open Container Initiative (OCI)

• Open standard for OS level virtualization

• Defines a number of specifications

• Runtime Specification

• Image Specification

• Distribution Specification

FreeBSD Jail / Container Ecosystem

• Lots of toolings (AppJail, Bastille, Iocage, …)

• Mostly creating stateful Jails

• Some are modern container like (pot) but not OCI compatible

• Only a few are both OCI compatible

• FreeBSD port of podman

• xc 👋

Why not port “podman”, “Docker”, etc…
Why invent another wheel

• At time time a FreeBSD podman port was not a thing

• REALLY want something play well and feel native to FreeBSD

• Improve on OCI image specification short-comings

• OCI is great, but I wanted more from FreeBSD containers

Why another Jail manager

• Need something for container workflow (ephemeral Jails)

• Need something to overcome the “distribution” problem

• Need something to play well with FreeBSD features (that’s why we run
FreeBSD)

FreeBSD “quirks”
Device nodes

• Many features require access to devices

• bhyve

• nmdm

• tuntap

• Require “something” to dynamically generate Devfs rulesets

• But not generating harmful ones (e.g. add path nda* unhide)

Special consideration

• VNET / non-VNET Jails

• Linux Jails

• Jailed ZFS

• DTrace

• Configure network interface / routing table without “ifconfig” in Jail

• Null mount on file

What is xc

• Container Runtime for FreeBSD

• Optimized for FreeBSD features

• Written 100% in Rust

• Strong focus on rigorousness to reduce user error

• Utilize industry standard (OCI Distribution Specification) for Image Distribution

• “Self Documenting” container images

Features
Not a Docker clone

• Utilize OCI image registry for distribution (AzureCR, DockerHub, AWS ECR..)

• Flexible networking

• Support both VNET/non-VNET containers

• Pre-Instantiation sanity checks

• Volume Hints

• Dynamic devfs rules allocation/generation (e.g. for block device, bhyve, etc…)

• Support Jail/Unjail ZFS datasets (e.g. for poudriere)

• Support running some Linux Docker/OCI Containers unmodified

• DTrace/USDT support on both the Runtime and Containers

Architecture

Client Daemon
UNIX Socket

Container Run Loop
UNIX Socket Jailed

Process

Jailed
ProcessFork

Using xc

Images

• Pull from Image Registries

• Convert a Jail (e.g. Bastille Jails) to container image

• Build using “Jailfile”

Networking

• Optional

• Synchronized with <xc:network:$NETWORK_NAME> pf tables

• Handle “Which interface the IP address should add to” for non VNET Jails

• Handle “Which interface is the bridge for the new epair” for VNET Jails

• Optionally handles automatic address allocation

Demo:
DockerHub & Linux Container

DTrace Support

• Allowing tracing per container (Jail)

• Wrapper around DWatch

• Enable valuable per-container performance/behavioural insight

DTrace Support - USDT
What is USDT?

• Customized probes defined in application

• Allow to trace application specific probe points

• Implemented in lots of software stacks

• Erlang BEAM

• Ruby

DTrace Support - USDT

• Support applications running in containers to register USDT probes

• The Runtime daemon itself also containers a number of USDT probes

Demo: Simple Erlang Container

Devfs ruleset management

• Container image can specify additional rules required

• Runtime automatically generates ruleset on demand, reuse identical ruleset

• Prompt user the generated devfs rules if required

• User can accept, or abort before the Jail created

Demo:
Diskless, networkless BHyve

Environment Variable Guarding

Environment Variable Guarding
“Traditional” container

• Satisfiability check (if exists) often considered part of the “business logic”

• Container must be created and run for validity checks - Expensive

• No guarantee of such check even exists

• No knowledge of required variables without consult external
documentation/trial

Environment Variable Guarding

“xc” container image

• Image config contains
specification of each
environment variable

• Enable runtime to check for
invalid configuration

• Provide useful feedback

• Extendable

ZFS

Volume Hints

• Allow developer to specify recommended ZFS properties for application volumes

• User can create volume base on the application specific purpose

Jailed ZFS

• Allows Jails to manage ZFS datasets

• Useful for ZFS related applications

• Runtime keep tracks of allocation

• Poudriere

Demo: Poudriere

Future/Ongoing Work

