
Gunion: a new GEOM utility
in the FreeBSD Kernel

Brought to you by

Dr. Marshall Kirk McKusick

EuroBSD Conference 2023
17 September 2023

University of Coimbra
Coimbra, Portugal

Copyright 2023 Marshall Kirk McKusick.
All Rights Reserved.

Kernel I/O Structure

page cache

OBJECT / VNODE layer

the hardware

newbus

system-call interface to the kernel

drivers

device

character-

raw

GEOM layer

devices

F
S

CAM layer

CAM device drivers AT A device drivers

Z

raw FFS

local naming (UFS)

active file entries

discipline

line
disk

VNODE layer

special devices

tty network

protocols

network-

interface

drivers

space
swap-

NFSVM

active file entries

socket

mgmt.

text ref: pp. 315-316

Disk Volume Management

GEOM Layer

• disk partitioning and labelling

• disk aggregation for mirror, RAID, or
striped logical volumes

• collection of I/O statistics

• I/O optimization such as disk sorting

disk

/dev/da0s1h/dev/da0s1a

/dev/da0s1

da0s1 da0s2

BSD label

GPT label

da0s1a ... da0s1h

/dev/da0s2

/dev/da0

da0

text ref: pp. 376-377, 391-399

Mirroring a Filesystem

GEOM Mirror Layer

• mirrors underlying partition

• can be inserted to copy filesystem

da0s1a ... da0s1h

GPT labelGPT label

diskdisk

mirror

BSD label

/dev/da0s1

da0s1 da0s2

/dev/da0s2

/dev/da0

da1s1 da1s2

da0da1

/dev/mirror/da0s1h/dev/mirror/da0s1a

text ref: pp. 376-377, 391-399

GEOM Operation

• Downward requests handled by g_down

• Upward requests handled by g_up

• Modules cannot sleep or compute
excessively

• Modules providing locking can allow
direct dispatch

• When provider goes away, error is
propagated up the stack

• When provider changes (spoiling), change
is propagated up the stack

text ref: pp. 376-377, 391-399

Memory Disk

Created and controlled using mdconfig(8).

Three types of memory disks:

• Dedicated kernel memory (malloc).

• Virtual kernel memory backed by swap
space (swap).

• Virtual kernel memory backed by a file
(vnode).

Appears to GEOM consumers like a
traditional disk.

Memory Disk Operation

Memory usage is based by type of backing.

• Malloc mode: the changes are all held in
kernel memory. Size is limited to kernel
memory available in a single kernel
malloc().

• Swap mode: the changes are all held in the
buffer cache. Pages get pushed out to the
swap area when the system is under
memory pressure, otherwise they stay in
the kernel memory.

• Vnode mode: a regular file is used as
backing store. Pages get pushed out to the
backing file when the system is under
memory pressure. All dirty pages are
pushed before destroying the memory disk
thus providing long-term persistence.

• For swap and vnode the space used by the
memory disk is based on the amount of
data written to it.

Gunion Facility

The gunion GEOM module tracks changes to
a read-only disk on a writable disk.

• Logically, a writable disk is placed over a
read-only disk.

• Write requests are intercepted and stored
on the writable disk.

• Read requests are first checked to see if
they hav e been written on the top (writable
disk) and if found are returned.

• If they hav e not been written on the top
disk, then they are read from the lower
disk.

/dev/md0s1-da0s1.union

GPT labelGPT label

disk

union

disk

/dev/da0s1

da0s1 da0s2

/dev/da0s2

/dev/da0

md0s1 md0s2

da0md0

Gunion Commands

create − Set up a union provider on the two
given devices. If the operation succeeds, the
new provider appears with name
/dev/(upperdev)-(lowerdev).union.

destroy − Disassemble the given union.

revert − Discard all the changes made in the
top layer thus reverting to the original state of
the lower device.

commit − Write all the changes made in the
top device to the lower device thus
committing the lower device to have the same
data as the union.

Gunion Operation

The upper disk must be at least the size of the
disk that it covers.

• The union metadata exists only for the
period of time that the union is
instantiated, so it is important to commit
the updates before destroying the union.

• If the top disk has 4K sectors and is about
0.5 percent larger than the disk that it
covers, it is posible (thought not currently
implemented) to save the union metadata
between instantiations of the union device.

Gunion Example

Create and destroy a union provider with
disks /dev/da0p1 as the read-only disk on the
bottom and /dev/md0 as the writable disk on
the top.

gunion create -v md0 da0p1
mount /dev/md0-da0p1.union /mnt

Proceed to make changes in /mnt filesystem.
If they are successful and you want to keep
them.

umount /mnt
gunion commit -v md0-da0p1.union

If they are unsuccessful and you want to roll
back.

umount /mnt
gunion revert -v md0-da0p1.union

When done eliminate the union.
umount /mnt
gunion destroy -v md0-da0p1.union

All uncommitted changes will be discarded
when the union is destroyed.

Gunion Uses Part 1

The gunion utility can be especially useful
when dealing with a large disk with a
corrupted filesystem that you are unsure of
how to repair.

• Use gunion to place another disk over the
corrupted disk and then attempt to repair
the filesystem.

• If the repair fails, ‘revert’ all the changes
in the upper disk and be back to the
unchanged state of the lower disk thus
allowing another approach to repairing it.

• If the repair is successful ‘commit’ all the
writes recorded on the top disk to be
written to the lower disk.

Gunion Uses Part 2

Use the gunion utility to try out a system
upgrade.

• Place the upper disk over the disk holding
your filesystem that is to be upgraded.

• Run the upgrade on it.

• If it works, ‘commit’ it

• If it fails, ‘revert’ the upgrade.

GEOM NOP Module

A GEOM module that does nothing.

Was written to provide the boilerplate needed
to create a GEOM module.

Features began being added to it.

• Export just a subset of the underlying
provider.

• Allow forcible destroy to simulate a dying
disk.

• Specify a possibly variable delay in
reading and/or writing through the layer.

• Specify a probability of failure reading
and/or writing through the layer.

Useful when testing:

• error recovery code.

• delay handling code.

• correctness of handing out-of-order I/O
operations.

Questions

Marshall Kirk McKusick

<mckusick@mckusick.com>

http://www.mckusick.com

FreeBSD Kernel Internals on Video

This 40-hour course is the detailed version of this introductory video and provides a com-

plete background of the FreeBSD kernel. It covers all the topics in the book. In addition,

it covers other related topics including performance measurement and system tuning.

The first video provides an introduction to the FreeBSD community. The remaining

videos consist of fifteen lectures on the FreeBSD kernel that align with the book chapters.

There are assigned readings to be completed before viewing each lecture. The first thir-

teen lectures have a set of exercises to be done after each video is viewed. Follow-up

comments on the exercises are provided at the beginning of the lecture following the one

in which they are assigned.

The syllabus for the the course is as follows:

0) Preface: an introduction to the FreeBSD community

1) Introduction: kernel terminology and basic kernel services

2) Kernel-resource management: locking

3) Processes: process structure and process management

4) Security: security framework and policies, Capsicum, and jails

5) Virtual memory: virtual-memory management, paging, and swapping

6) Kernel I/O system: multiplexing I/O, support for multiple filesystems, the block I/O

system (buffer cache), and stackable filesystems

7) Devices: special files, pseudo-terminal handling, autoconfiguration strategy, structure

of a disk device driver, and machine virtualization

8) Local filesystem implementation: fast filesystem (FFS)

9) Local filesystem implementation: zettabyte filesystem (ZFS)

10) Remote filesystem implementation: network filesystem (NFS)

11) Interprocess communication: concepts and terminology, basic IPC services, system

layers and interfaces, and code review of a simple application that demonstrates use

of the IPC and network facilities

12) Network layer: IPv4 and IPv6 protocols, firewalls, and routing

13) Transport layer: TCP and SCTP

14) System startup: boot loaders, kernel startup, and system launch; system measurement

tools

15) System tuning: performance measurement and system tuning

In addition to the preface and fifteen lecture videos, you also receive a copy of the

course notes containing copies of all the overhead slides used in the course, an extensive

set of written notes about each lecture, a set of weekly readings from this textbook, thir-

teen sets of exercises (along with answers), and a set of papers that provide supplemental

reading to the text.

Tiered pricing is available for companies, individuals, and students. On-site courses

can be arranged. For up-to-date information on course availability and pricing or to place

an order, see the Web page at

http://www.mckusick.com/courses/

Advanced FreeBSD Course on Video

The 46-hour course provides an in-depth study of the source code of the FreeBSD kernel.

It is aimed at users who already have a good understanding of the algorithms used in the

FreeBSD kernel and want to learn the details of each algorithm’s implementation. Stu-

dents are expected to have either taken this class or a similar class taught by the instructor

or to have throughly read and understood ‘‘The Design and Implementation of the Free-

BSD Operating System, Second Edition’’ (published by Pearson Education’s Addison-

Wesley Professional division). They are also expected to have a complete background in

reading and programming in the C programming language. Students will not need to

prove relationship with a source license holder, as the course is based on the non-propri-

etary kernel sources released by the FreeBSD project.

The class consists of fifteen lectures on the FreeBSD kernel source code. The lec-

ture topics are:

1) Organization, overview of source layout

2) Kernel header files

3) System calls and file opening

4) Pathname translation and file creation

5) Vnode interface mechanics, writing to an FFS file

6) Write to a ZFS file

7) Opening, using, and closing locally connected sockets

8) User datagram protocol and routing

9) TCP algorithms

10) Fork, exit, and exec

11) Signal generation and delivery, scheduling

12) Virtual memory header files, file mapping

13) Page fault service, pageout processing

14) NFS client and server operation

15) Multiplexing with select, system startup

In addition to the fifteen lecture videos, you also receive a CD-ROM with a copy of

the FreeBSD kernel source covered in the lectures and a copy of the lecture notes.

Tiered pricing is available for companies, individuals, and students. For up-to-date

information on course availability and pricing or to place an order, see the Web page at

http://www.mckusick.com/courses/

FreeBSD Networking from the Bottom Up on Video

This course describes the FreeBSD networking stack. It is made up of a series of

lectures derived from tutorials given by George Neville-Neil.

The class currently consists of five lectures, though additional lectures are being

developed. The current lecture topics are:

1) Device Drivers: how to write and maintain network drivers in FreeBSD. By way of

example it uses the Intel Gigabit Ethernet driver (igb). The lecture covers the basic

data structures and APIs necessary to implement a network driver in FreeBSD. It is

specific enough that given a device and a manual, you should be able to develop a

working driver on your own.

2) The IPv6 Stack: an in-depth discussion and code walk-through of version 6 of the IP

protocols, describing and dissecting the paths that packets take from the driver layer

up to the socket layer of the network stack. The lecture covers the four paths packets

travel through the network stack: reception, transmission, forwarding, and error han-

dling.

3) Routing: packet forwarding and routing subsystems in FreeBSD. The routing and for-

warding code are the glue that keeps the networking stack together, connecting the

network protocols, such as IPv4 and IPv6, to their underlying data link layers and

making sure that packets are sent to the correct next hop in the network. Topics in

the lecture include the Routing Information Base (RIB), Forwarding Information

Base (FIB), and the systems that interact with them. Also covered are routing sockets

and the RIB/FIB APIs, the address-resolution protocol (ARP), Neighbor Discovery

(ND6), the Common Address Redundancy Protocol (CARP), the IP firewall and traffic

shaper control program (ipfw), and the packet filter interface (pfil).

4) Packet Processing Frameworks: The FreeBSD Kernel has several different packet pro-

cessing frameworks—software that is meant to transform packets but which are not

traditionally considered to be network protocols. It is these packet processing frame-

works that are often the basis for new products built with FreeBSD. This lecture cov-

ers all of the packet processing frameworks, including the Berkeley Packet Filter

(BPF), IP Firewall (IPFW), Dummynet, Packet Filter (PF), Netgraph, and netmap. It

discusses the appropriate use of each framework and takes a walk through the rele-

vant sections of each framework. Working examples of extensions to each frame-

work are given so that students can see how to build new systems with and around the

frameworks that are present in the kernel.

5) A Look Inside FreeBSD Using DTrace. DTrace is a modern system that gives soft-

ware developers the ability to add low overhead tracing that is always available to

programs that they are creating, modifying, and debugging. The desired tracing is

described and controlled with an advanced scripting language. This tutorial covers

the basics of DTrace, including basic and advanced uses. Using a set of worked

examples, students learn to add tracing to user space and kernel space systems. The

tutorial includes a set of short labs carried out on virtual machines that give the stu-

dents hands-on experience working with DTrace.

Each lecture may be purchased separately and comes with a copy of its course notes.

Tiered pricing is available for companies, individuals, and students. For up-to-date infor-

mation on course availability and pricing or to place an order, see the Web page at

http://www.mckusick.com/courses/

CSRG Archive CD-ROMs

Thanks to the efforts of the volunteers of the ‘‘UNIX Heritage Society’’ (see

http://www.tuhs.org) and the willingness of Caldera to release 32/V under an open source

license (see http://www.mckusick.com/csrg/calder-lic.pdf), it is now possible to make the

full source archives of the University of California at Berkeley’s Computer Systems

Research Group (CSRG) available.

The archive contains four CD-ROMs with the following content:

CD-ROM #1—Berkeley Systems 1978–1986

1bsd 2.9pucc 4.1.snap 4.2buglist

2.10 2bsd 4.1a 4.3

2.79 3bsd 4.1c.1 VM.snapshot.1

2.8 4.0 4.1c.2 pascal.2.0

2.9 4.1 4.2 pascal.2.10

CD-ROM #2—Berkeley Systems 1987–1993

4.3reno 4.4BSD-Lite1 net.1

4.3tahoe VM.snapshot.2 net.2

CD-ROM #3—Final Berkeley Releases

4.4 4.4BSD-Lite2

CD-ROM #4—Final /usr/src including SCCS files

Contrib admin games local sys

Makefile bin include old usr.bin

README contrib lib sbin usr.sbin

SCCS etc libexec share

The University of California at Berkeley wants you to know that these CD-ROMs

contain software developed by the University of California at Berkeley and its many con-

tributors.

The CD-ROMs are produced using standard pressing technology, not with write-once

CD-R technology. Thus, they are expected to have a 100-year lifetime rather than the

10–20 years expected of CD-R disks. The CDs are sold only in complete sets; they are not

available individually. The price for the 4-CD set is $99. The contents of the original four

CD-ROMs plus some additional early UNIX distributions is available on a single DVD

using 100-year lifetime M-DISC technology for $149.00. The archive can be ordered from

http://www.mckusick.com/csrg/

The compilation of this archive is copyright © 1998 by Marshall Kirk McKusick.

You may freely redistribute it to anyone else. However, I appreciate you buying your own

copy to help cover the costs that I incurred in producing the archive.

History of UNIX at Berkeley

Learn the history of the BSD (Berkeley Software Distributions) from one of the key dev el-

opers who brings the history to life, complete with anecdotes and interesting footnotes to

the historical narrative.

Part I is titled ‘‘Twenty Years of Berkeley UNIX: From AT&T-Owned to Freely

Redistributable.’’ The history of UNIX development at Berkeley has been recounted in

detail by Marshall Kirk McKusick in his chapter in the O’Reilly book Open Sources:

Voices from the Open Source Revolution and is now recounted in part one of this video. It

begins with the start of the BSD community at the University of California at Berkeley in

the late 1970s. It relates the triumphs and defeats of the project and its releases during its

heydays in the 1980s. It concludes with the tumultuous lawsuit ultimately settled in Berke-

ley’s favor, which allowed the final release in 1992 of 4.4BSD-Lite, an open-source version

of BSD.

Part II is titled ‘‘Building and Running An Open-Source Community:

The FreeBSD Project.’’ It tells the story of the independent development by

the FreeBSD project starting from the open-source release from Berkeley. The FreeBSD

project patterned its initial community structure on the development structure built up at

Berkeley. It evolved and expanded that structure to create a self-organizing project that

supports an ever growing and changing group of developers around the world. This part

concludes with a description of the roles played by the thousands of volunteer developers

that make up the FreeBSD Project of today.

Dr. Marshall Kirk McKusick’s work with UNIX and BSD development spans over

thirty years. It begins with his first paper on the implementation of Berkeley Pascal in

1979, goes on to his pioneering work in the eighties on the BSD Fast File System, the BSD

virtual memory system, and the final release of 4.4BSD-Lite from the University of Cali-

fornia Berkeley Computer Systems Research Group. Since 1993, he has been working on

FreeBSD, adding soft updates, snapshots, and the second-generation Fast Filesystem to the

system. A key figure in UNIX and BSD development, his experiences chronicle not only

the innovative technical achievements, but also the interesting personalities and philosoph-

ical debates in UNIX since its inception in 1970.

The price for the video is $19.95. The video can be ordered from

http://www.mckusick.com/history/

