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What will not be here
• Long lists of code or pictures of ELF-code C 

structs
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• Building your C Program:
•C source to assembler (.s)
• Assembler source to object (.o) file
• Linker joins one or more object files to a binary

• Prg.c -> Prg.s -> Prg.o -> Prg
• (cc —save-temps)
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Object files

• Building your C Program:
• clang and gcc often do all in one step
• Takes long time for huge source files
• Split sources into separate files leading to multiple .o 

object files linked into one binary
• a.c -> a.o 

b.c -> b.o 
ld a.o b.o -o ./c-prg
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Object files

• Building your C Program:
• The linking is the interesting step for us
• Last chance for certain optimizations (LTO) or 

joining similar sections into one
• Takes more than 4G RAM for linking browsers 

with full debug info
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Object Files

• Building your C Program:
• Each object file lists which symbols it provides 

and which ones it requires
•C++ programs and objects “mangle” their 

functions (methods) to include information about 
what data types they accept and return
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Object Files

• Building your C Program:
• int add_to_d(a,b)  
{ int c; extern int d; return c=d+a+b; }
•will require “d” and provide “add_to_d” 
but not a,b or c. Those are just 
anonymous ints in the code
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• Building your C Program:
•Use objdump -t to list what an object file or a 

program requires and provides.
• nm(1) also works, readelf(1) and many other 

utilities
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Object Files

• Building your C Program:
• Adding 3rd party library named libabc:
• #include “abc-lib.h”
•Calling abc(ABC_OK,myint); from your program
• Your object file/program now requires the “abc” 

symbol
• Perhaps an abc.c -> abc.o exists?
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Static libraries
• Building your C Program:
•Use cc -static -labc
• Static libraries are precompiled objects.
• a.o b.o c.o -> /usr/lib/libabc.a
•Makes your binary large, can’t update abc()
• Vendoring lib sources is boring
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Shared Libraries
• Building your C Program:
• If you have /usr/lib/libabc.so(.12.3.4) you can 

get the abc symbol from it. Use cc -labc
• But OS and exec*() calls need to make sure 

libabc.so is in memory when your program is 
done loading

• Linker does checks, runtime fail if lib is missing
•Dynamic lib might in turn ALSO require symbols
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ELF sections
• ELF binaries 
• A header listing number and length of sections
• Each section with its own content, length and 

type
• Lots of optional sections, like debug info
• Kernel skips loading optional sections when 

executing
• strip(1) removes all “unused” sections



ELF sections



ELF sections
• ELF binaries with debug symbols



ELF sections
• ELF binaries with debug symbols
•Debug info could simply be labels and function 

names



ELF sections
• ELF binaries with debug symbols
•Debug info could simply be labels and function 

names
• But it can also be the whole source file



ELF sections
• ELF binaries with debug symbols
•Debug info could simply be labels and function 

names
• But it can also be the whole source file
• Allows for godbolt style line-by-line assembler 

dumps/debugger listings
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ELF sections
• ELF binaries 
• Text - Where the code goes. Readonly in mem
•Data - All strings and variables with non-zero 

content
• BSS - For all zero-filled variables and structs. 

The BSS section only has a size, then variables 
point into this calloc(3)ed space
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ELF sections
• ELF binaries 
• Text - Where the code goes.
• Text sections list for which CPU and arch they 

belong
•Means you can make “fat binaries” with several 

CPU/Arch code sections that all reference same 
variables in data and BSS sections



ELF sections
•Data Section(s) 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Loading into RAM
• Should be simple, set up pmap for new PID,  

open(“binary”); read(…); jump into main().
•Get a lock on the program file
•mmap() the code from file into pmap RAM.
• As CPU runs code, mmap:ed memory gets filled 

in from file content one page at a time
• Readonly Text section means forks and parallel 

instances can share code RAM
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Loading into RAM
•Get a lock on the program file inode
•Means filesystem will not allow delete until last 

binary exits
• rm will only remove directory entry; inode and 

contents still on disk
• fstat(1) can list open files
• Linux with /proc/<PID>/exe could perhaps 

recreate a new binary
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The role of ld.so
• ld.so is “the interpreter” of all dynamically linked 

programs
• Just like #!/bin/bash is the interpreter for *.sh 

and #!/usr/bin/python3 for the *.py programs
•Only static binaries need no interpreter
• Some of the tasks done by ld.so are in crt0.o 

for static binaries
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The role of ld.so
• ELF sections list required symbols (functions) and 

suggests names of libs to provide them
• Libc supplies some weak symbols so other libraries 

can override them; perhaps like zlib, could give 
transparent gunzip functionality to any program

• LD_RUN_PATH, LD_PRELOAD, 
LD_LIBRARY_PATH overrides OS defaults

• ldd(1) to test/show what would be loaded
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The role of ld.so
• ldd was the first program in OpenBSD base to 

use execpromises from pledge(2)
•Having a very limited set for the half-run 

program ldd runs limits the security impact a lot
• Probably the best case currently for 

execpromises
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The role of ld.so
• ld.so will pick the highest numbered libabc.so it 

can find
•Old libraries may actually not hurt
• Your program should not hard-code minor 

versions
• /usr/local/lib/libabc.so -> libabc.so.12.3
• libpng16.so.16  ; compile with -lpng16
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The role of ld.so
• Slightly less common
•Using handle=dlopen(“somelib”) to open a 

library during runtime of your binary
• Then call somefunc=dlsym(handle,”somefunc”) 

to get the pointer to a named function
•Call (*somefunc)(a, b); as usual
• For plugins and similar hot loadable code
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The role of ld.so
•Cached results of ldconfig(8) at 

/var/run/ld.so.hints to quickly find correct library
•Generated at every boot
• setuid programs only use ld.so.hints
• Bad if hints file is empty/outdated 
•Double check ldconfig(8) manpage
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just like binaries, but  
without main()

• So alike, that programs  
can dlopen() other programs

• Some programs even  
dlopen() themselves!



The role of ld.so



The role of ld.so
•More stages while your program is starting and 

ending



The role of ld.so
•More stages while your program is starting and 

ending
• atexit(3) might be commonly known



The role of ld.so
•More stages while your program is starting and 

ending
• atexit(3) might be commonly known
• Each call to atexit() registers a subroutine to 

call before real exit. They run in reverse order.
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The role of ld.so
•More stages while your program is starting and 

ending
• constructor and destructor stages.
• destructor runs after your atexit() calls
• void __attribute__ ((constructor)) 

myconstructor() { … } 
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The role of ld.so
•More stages while your program is starting and 

ending
• There are also preinit, init and fini stages.
• In my obsd tests, only preinit worked, __init 

and __fini already defined in libc. 
• --allow-multiple-definition “solves” this
• The final order of all hooks is:
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The role of ld.so
•More stages while your program is starting and ending
• preinit
• constructor
• init
•main
• atexit
• fini
• destructor
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The role of ld.so
• Even more stages while your program is starting 

and ending
• constructor 

This one has 65536 possible levels
• Levels <=100 reserved for not-you
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GOT / PLT
•GOT - Global Offset Table
• A list of relative offsets into segments so 

relocated programs can find program-internal 
addresses

•Needed by static binaries too
•How you divide BSS into the ints, longs, structs 

the linker placed there
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GOT / PLT
• PLT - Program Link Table
• List of jumps to shared library symbols like 

printf() and puts()
•Often lazy resolving - Wacky code rewrite
• Requires some tricks due to code reentrancy
• Threads, signal handlers and so on
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GOT / PLT
• PLT - Program Link Table
• Each jump subsection contains NOPs around 

the actual call to have ld.so resolve the current 
symbol

• Filled in backwards, overwriting the jmp 
instruction last

• If we race, symbol resolves happen twice. 
Ok worst case
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GOT / PLT
• PLT - Program Link Table
• Program calls printf() -> ld.so turns this into
•Call our own PLT Entry #2
• First time, resolve entry #2 to pointer to where 

printf() is defined in libc GOT then call it
•Change PLT entry #2 to point to libc GOT for 

printf()
•Next call(s) go directly from PLT#2 to libc-GOT
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OpenBSD recent changes
• kbind(2)
• Allows for lazy symbol bindings
•OpenBSD would prefer non-lazy to keep PLT 

readonly, kbind(2) works around RO.
• First use from ld.so registers location and a 

cookie, later uses must come from same place 
and with same cookie
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OpenBSD recent changes
• Syscalls via libc only
• Kernel enforces syscalls from designated 

locations
• Previously, syscalls could not be made from 

writeable memory
• Requires specific support from golang 

compiler
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OpenBSD recent changes
•mimmutable(2)
•Makes sure the memory range permissions 

can never change.
• The memory may change, but not the 

permissions (RW -> RO exception possible)
• Lots of ELF sections in libc, ld.so and crt0.o 

becomes immutable by default
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OpenBSD recent changes
• pinsyscall(2)
•Marks the only spot where the pinned syscalls 

can be made from - sigabort if wrong
•Currently (7.3) only execve()
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OpenBSD recent changes
• Xonly code regions
•With some trickery, one can check/detect 

reads made while executing -vs- reading code 
segment

•Have to move data out from inline asm code
• Potential defense against Blind ROP
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OpenSSH - CVE-2023-38408
•Only works if you use ssh-agent and “ssh -A evil-

host” intending to jump to dest-host instead of 
“ssh -J evil-host dest-host”

• The “evil-host” gets to pretend that dest-host wants 
you to try huge amount of auth protocols

• Each protocol will mean ssh-agent uses dlopen() to 
load library appropriate for the auth tried

• Load bad libs -> *boom*
• Linux seemingly have tons of bad libs



ELF links 

https://s3.inet6.se/links.html



Questions?


