
jj@deadzoft.org 2023-05-18

ELF binaries and everything 
before main() starts

mailto:jj@deadzoft.org


jj@deadzoft.org 2023-05-18

$ whoami

mailto:jj@deadzoft.org


jj@deadzoft.org 2023-05-18

$ whoami
• Started with OpenBSD 2.2 in the 90s

mailto:jj@deadzoft.org
mailto:jj@openbsd.org
http://eu.openbsd.org


jj@deadzoft.org 2023-05-18

$ whoami
• Started with OpenBSD 2.2 in the 90s
• Did some release builds for OpenBSD-

amiga (m68k)

mailto:jj@deadzoft.org
mailto:jj@openbsd.org
http://eu.openbsd.org


jj@deadzoft.org 2023-05-18

$ whoami
• Started with OpenBSD 2.2 in the 90s
• Did some release builds for OpenBSD-

amiga (m68k)
• Off an on as jj@openbsd.org (currently off)

mailto:jj@deadzoft.org
mailto:jj@openbsd.org
http://eu.openbsd.org


jj@deadzoft.org 2023-05-18

$ whoami
• Started with OpenBSD 2.2 in the 90s
• Did some release builds for OpenBSD-

amiga (m68k)
• Off an on as jj@openbsd.org (currently off)
• Host various services as *.eu.openbsd.org

mailto:jj@deadzoft.org
mailto:jj@openbsd.org
http://eu.openbsd.org


jj@deadzoft.org 2023-05-18

$ whoami
• Started with OpenBSD 2.2 in the 90s
• Did some release builds for OpenBSD-

amiga (m68k)
• Off an on as jj@openbsd.org (currently off)
• Host various services as *.eu.openbsd.org
• “IcePic” on IRC

mailto:jj@deadzoft.org
mailto:jj@openbsd.org
http://eu.openbsd.org


jj@deadzoft.org 2023-05-18

$ whoami
• Started with OpenBSD 2.2 in the 90s
• Did some release builds for OpenBSD-

amiga (m68k)
• Off an on as jj@openbsd.org (currently off)
• Host various services as *.eu.openbsd.org
• “IcePic” on IRC
• Collects octeon/mips64 based computers

mailto:jj@deadzoft.org
mailto:jj@openbsd.org
http://eu.openbsd.org


Contents
• A Simple(tm) Program

•Object files

• Shared libraries

• ELF sections

• Loading binaries into RAM

• The role of ld.so

•GOT / PLT

•OpenBSD recent changes



What will not be here
• Long lists of code or pictures of ELF-code C 

structs

•How Rust,Golang,Zig,… binaries work



A Simple(tm) Program



A Simple(tm) Program



A Simple(tm) Program

• Building your C Program:



A Simple(tm) Program

• Building your C Program:
•C source to assembler (.s)



A Simple(tm) Program

• Building your C Program:
•C source to assembler (.s)
• Assembler source to object (.o) file



A Simple(tm) Program

• Building your C Program:
•C source to assembler (.s)
• Assembler source to object (.o) file
• Linker joins one or more object files to a binary



A Simple(tm) Program

• Building your C Program:
•C source to assembler (.s)
• Assembler source to object (.o) file
• Linker joins one or more object files to a binary

• Prg.c -> Prg.s -> Prg.o -> Prg



A Simple(tm) Program

• Building your C Program:
•C source to assembler (.s)
• Assembler source to object (.o) file
• Linker joins one or more object files to a binary

• Prg.c -> Prg.s -> Prg.o -> Prg
• (cc —save-temps)



Object files



Object files

• Building your C Program:



Object files

• Building your C Program:
• clang and gcc often do all in one step



Object files

• Building your C Program:
• clang and gcc often do all in one step
• Takes long time for huge source files



Object files

• Building your C Program:
• clang and gcc often do all in one step
• Takes long time for huge source files
• Split sources into separate files leading to multiple .o 

object files linked into one binary



Object files

• Building your C Program:
• clang and gcc often do all in one step
• Takes long time for huge source files
• Split sources into separate files leading to multiple .o 

object files linked into one binary
• a.c -> a.o 

b.c -> b.o 
ld a.o b.o -o ./c-prg



Object files



Object files

• Building your C Program:



Object files

• Building your C Program:
• The linking is the interesting step for us



Object files

• Building your C Program:
• The linking is the interesting step for us
• Last chance for certain optimizations (LTO) or 

joining similar sections into one



Object files

• Building your C Program:
• The linking is the interesting step for us
• Last chance for certain optimizations (LTO) or 

joining similar sections into one
• Takes more than 4G RAM for linking browsers 

with full debug info



Object Files



Object Files

• Building your C Program:



Object Files

• Building your C Program:
• Each object file lists which symbols it provides 

and which ones it requires



Object Files

• Building your C Program:
• Each object file lists which symbols it provides 

and which ones it requires
•C++ programs and objects “mangle” their 

functions (methods) to include information about 
what data types they accept and return



Object Files



Object Files

• Building your C Program:



Object Files

• Building your C Program:
• int add_to_d(a,b)  
{ int c; extern int d; return c=d+a+b; }



Object Files

• Building your C Program:
• int add_to_d(a,b)  
{ int c; extern int d; return c=d+a+b; }
•will require “d” and provide “add_to_d” 
but not a,b or c. Those are just 
anonymous ints in the code



Object Files



Object Files

• Building your C Program:



Object Files

• Building your C Program:
•Use objdump -t to list what an object file or a 

program requires and provides.



Object Files

• Building your C Program:
•Use objdump -t to list what an object file or a 

program requires and provides.
• nm(1) also works, readelf(1) and many other 

utilities



Object Files



Object Files

• Building your C Program:



Object Files

• Building your C Program:
• Adding 3rd party library named libabc:



Object Files

• Building your C Program:
• Adding 3rd party library named libabc:
• #include “abc-lib.h”



Object Files

• Building your C Program:
• Adding 3rd party library named libabc:
• #include “abc-lib.h”
•Calling abc(ABC_OK,myint); from your program



Object Files

• Building your C Program:
• Adding 3rd party library named libabc:
• #include “abc-lib.h”
•Calling abc(ABC_OK,myint); from your program
• Your object file/program now requires the “abc” 

symbol



Object Files

• Building your C Program:
• Adding 3rd party library named libabc:
• #include “abc-lib.h”
•Calling abc(ABC_OK,myint); from your program
• Your object file/program now requires the “abc” 

symbol
• Perhaps an abc.c -> abc.o exists?



Static libraries



Static libraries
• Building your C Program:



Static libraries
• Building your C Program:
•Use cc -static -labc



Static libraries
• Building your C Program:
•Use cc -static -labc
• Static libraries are precompiled objects.



Static libraries
• Building your C Program:
•Use cc -static -labc
• Static libraries are precompiled objects.
• a.o b.o c.o -> /usr/lib/libabc.a



Static libraries
• Building your C Program:
•Use cc -static -labc
• Static libraries are precompiled objects.
• a.o b.o c.o -> /usr/lib/libabc.a
•Makes your binary large, can’t update abc()



Static libraries
• Building your C Program:
•Use cc -static -labc
• Static libraries are precompiled objects.
• a.o b.o c.o -> /usr/lib/libabc.a
•Makes your binary large, can’t update abc()
• Vendoring lib sources is boring



Shared Libraries



Shared Libraries
• Building your C Program:



Shared Libraries
• Building your C Program:
• If you have /usr/lib/libabc.so(.12.3.4) you can 

get the abc symbol from it. Use cc -labc



Shared Libraries
• Building your C Program:
• If you have /usr/lib/libabc.so(.12.3.4) you can 

get the abc symbol from it. Use cc -labc
• But OS and exec*() calls need to make sure 

libabc.so is in memory when your program is 
done loading



Shared Libraries
• Building your C Program:
• If you have /usr/lib/libabc.so(.12.3.4) you can 

get the abc symbol from it. Use cc -labc
• But OS and exec*() calls need to make sure 

libabc.so is in memory when your program is 
done loading

• Linker does checks, runtime fail if lib is missing



Shared Libraries
• Building your C Program:
• If you have /usr/lib/libabc.so(.12.3.4) you can 

get the abc symbol from it. Use cc -labc
• But OS and exec*() calls need to make sure 

libabc.so is in memory when your program is 
done loading

• Linker does checks, runtime fail if lib is missing
•Dynamic lib might in turn ALSO require symbols



A Less Simple(tm) Program



A Less Simple(tm) Program



A Less Simple(tm) Program



A Less Simple(tm) Program



A Less Simple(tm) Program



ELF sections



ELF sections
• ELF binaries 



ELF sections
• ELF binaries 
• A header listing number and length of sections



ELF sections
• ELF binaries 
• A header listing number and length of sections
• Each section with its own content, length and 

type



ELF sections
• ELF binaries 
• A header listing number and length of sections
• Each section with its own content, length and 

type
• Lots of optional sections, like debug info



ELF sections
• ELF binaries 
• A header listing number and length of sections
• Each section with its own content, length and 

type
• Lots of optional sections, like debug info
• Kernel skips loading optional sections when 

executing



ELF sections
• ELF binaries 
• A header listing number and length of sections
• Each section with its own content, length and 

type
• Lots of optional sections, like debug info
• Kernel skips loading optional sections when 

executing
• strip(1) removes all “unused” sections



ELF sections



ELF sections
• ELF binaries with debug symbols



ELF sections
• ELF binaries with debug symbols
•Debug info could simply be labels and function 

names



ELF sections
• ELF binaries with debug symbols
•Debug info could simply be labels and function 

names
• But it can also be the whole source file



ELF sections
• ELF binaries with debug symbols
•Debug info could simply be labels and function 

names
• But it can also be the whole source file
• Allows for godbolt style line-by-line assembler 

dumps/debugger listings



ELF sections



ELF sections
• ELF binaries 



ELF sections
• ELF binaries 
• Text - Where the code goes. Readonly in mem



ELF sections
• ELF binaries 
• Text - Where the code goes. Readonly in mem
•Data - All strings and variables with non-zero 

content



ELF sections
• ELF binaries 
• Text - Where the code goes. Readonly in mem
•Data - All strings and variables with non-zero 

content
• BSS - For all zero-filled variables and structs. 

The BSS section only has a size, then variables 
point into this calloc(3)ed space



ELF sections



ELF sections



ELF sections
• ELF binaries 



ELF sections
• ELF binaries 
• Text - Where the code goes. Readonly in mem



ELF sections
• ELF binaries 
• Text - Where the code goes. Readonly in mem
•Data - All strings and variables with non-zero 

content



ELF sections
• ELF binaries 
• Text - Where the code goes. Readonly in mem
•Data - All strings and variables with non-zero 

content
• BSS - For all zero-filled variables and structs



ELF sections



ELF sections
• ELF binaries



ELF sections
• ELF binaries
•Ok, a few more 

sections than just 
text, data & bss.



ELF sections
• ELF binaries
•Ok, a few more 

sections than just 
text, data & bss.



ELF sections



ELF sections
• ELF binaries 



ELF sections
• ELF binaries 
• Text - Where the code goes.



ELF sections
• ELF binaries 
• Text - Where the code goes.
• Text sections list for which CPU and arch they 

belong



ELF sections
• ELF binaries 
• Text - Where the code goes.
• Text sections list for which CPU and arch they 

belong
•Means you can make “fat binaries” with several 

CPU/Arch code sections that all reference same 
variables in data and BSS sections



ELF sections
•Data Section(s) 



A Less Simple(tm) Program



A Less Simple(tm) Program



A Less Simple(tm) Program



A Simple(tm) Program



A Simple(tm) Program



Loading into RAM



Loading into RAM



Loading into RAM
• Should be simple, set up pmap for new PID,  

open(“binary”); read(…); jump into main().



Loading into RAM
• Should be simple, set up pmap for new PID,  

open(“binary”); read(…); jump into main().
•Get a lock on the program file



Loading into RAM
• Should be simple, set up pmap for new PID,  

open(“binary”); read(…); jump into main().
•Get a lock on the program file
•mmap() the code from file into pmap RAM.



Loading into RAM
• Should be simple, set up pmap for new PID,  

open(“binary”); read(…); jump into main().
•Get a lock on the program file
•mmap() the code from file into pmap RAM.
• As CPU runs code, mmap:ed memory gets filled 

in from file content one page at a time



Loading into RAM
• Should be simple, set up pmap for new PID,  

open(“binary”); read(…); jump into main().
•Get a lock on the program file
•mmap() the code from file into pmap RAM.
• As CPU runs code, mmap:ed memory gets filled 

in from file content one page at a time
• Readonly Text section means forks and parallel 

instances can share code RAM



Loading into RAM



Loading into RAM
•Get a lock on the program file inode



Loading into RAM
•Get a lock on the program file inode
•Means filesystem will not allow delete until last 

binary exits



Loading into RAM
•Get a lock on the program file inode
•Means filesystem will not allow delete until last 

binary exits
• rm will only remove directory entry; inode and 

contents still on disk



Loading into RAM
•Get a lock on the program file inode
•Means filesystem will not allow delete until last 

binary exits
• rm will only remove directory entry; inode and 

contents still on disk
• fstat(1) can list open files



Loading into RAM
•Get a lock on the program file inode
•Means filesystem will not allow delete until last 

binary exits
• rm will only remove directory entry; inode and 

contents still on disk
• fstat(1) can list open files
• Linux with /proc/<PID>/exe could perhaps 

recreate a new binary



Loading into RAM



The role of ld.so



The role of ld.so
• ld.so is “the interpreter” of all dynamically linked 

programs



The role of ld.so
• ld.so is “the interpreter” of all dynamically linked 

programs
• Just like #!/bin/bash is the interpreter for *.sh 

and #!/usr/bin/python3 for the *.py programs



The role of ld.so
• ld.so is “the interpreter” of all dynamically linked 

programs
• Just like #!/bin/bash is the interpreter for *.sh 

and #!/usr/bin/python3 for the *.py programs
•Only static binaries need no interpreter



The role of ld.so
• ld.so is “the interpreter” of all dynamically linked 

programs
• Just like #!/bin/bash is the interpreter for *.sh 

and #!/usr/bin/python3 for the *.py programs
•Only static binaries need no interpreter
• Some of the tasks done by ld.so are in crt0.o 

for static binaries



The role of ld.so



The role of ld.so
• ELF sections list required symbols (functions) and 

suggests names of libs to provide them



The role of ld.so
• ELF sections list required symbols (functions) and 

suggests names of libs to provide them
• Libc supplies some weak symbols so other libraries 

can override them; perhaps like zlib, could give 
transparent gunzip functionality to any program



The role of ld.so
• ELF sections list required symbols (functions) and 

suggests names of libs to provide them
• Libc supplies some weak symbols so other libraries 

can override them; perhaps like zlib, could give 
transparent gunzip functionality to any program

• LD_RUN_PATH, LD_PRELOAD, 
LD_LIBRARY_PATH overrides OS defaults



The role of ld.so
• ELF sections list required symbols (functions) and 

suggests names of libs to provide them
• Libc supplies some weak symbols so other libraries 

can override them; perhaps like zlib, could give 
transparent gunzip functionality to any program

• LD_RUN_PATH, LD_PRELOAD, 
LD_LIBRARY_PATH overrides OS defaults

• ldd(1) to test/show what would be loaded



The role of ld.so
• ldd “half-runs” the binary and lists what gets 

picked up by ld.so along the way



The role of ld.so
• ldd “half-runs” the binary and lists what gets 

picked up by ld.so along the way



The role of ld.so



The role of ld.so
• ldd was the first program in OpenBSD base to 

use execpromises from pledge(2)



The role of ld.so
• ldd was the first program in OpenBSD base to 

use execpromises from pledge(2)
•Having a very limited set for the half-run 

program ldd runs limits the security impact a lot



The role of ld.so
• ldd was the first program in OpenBSD base to 

use execpromises from pledge(2)
•Having a very limited set for the half-run 

program ldd runs limits the security impact a lot
• Probably the best case currently for 

execpromises



The role of ld.so



The role of ld.so
• ld.so will pick the highest numbered libabc.so it 

can find



The role of ld.so
• ld.so will pick the highest numbered libabc.so it 

can find
•Old libraries may actually not hurt



The role of ld.so
• ld.so will pick the highest numbered libabc.so it 

can find
•Old libraries may actually not hurt
• Your program should not hard-code minor 

versions



The role of ld.so
• ld.so will pick the highest numbered libabc.so it 

can find
•Old libraries may actually not hurt
• Your program should not hard-code minor 

versions
• /usr/local/lib/libabc.so -> libabc.so.12.3



The role of ld.so
• ld.so will pick the highest numbered libabc.so it 

can find
•Old libraries may actually not hurt
• Your program should not hard-code minor 

versions
• /usr/local/lib/libabc.so -> libabc.so.12.3
• libpng16.so.16  ; compile with -lpng16



The role of ld.so



The role of ld.so
• Slightly less common



The role of ld.so
• Slightly less common
•Using handle=dlopen(“somelib”) to open a 

library during runtime of your binary



The role of ld.so
• Slightly less common
•Using handle=dlopen(“somelib”) to open a 

library during runtime of your binary
• Then call somefunc=dlsym(handle,”somefunc”) 

to get the pointer to a named function



The role of ld.so
• Slightly less common
•Using handle=dlopen(“somelib”) to open a 

library during runtime of your binary
• Then call somefunc=dlsym(handle,”somefunc”) 

to get the pointer to a named function
•Call (*somefunc)(a, b); as usual



The role of ld.so
• Slightly less common
•Using handle=dlopen(“somelib”) to open a 

library during runtime of your binary
• Then call somefunc=dlsym(handle,”somefunc”) 

to get the pointer to a named function
•Call (*somefunc)(a, b); as usual
• For plugins and similar hot loadable code



The role of ld.so



The role of ld.so
•Cached results of ldconfig(8) at 

/var/run/ld.so.hints to quickly find correct library



The role of ld.so
•Cached results of ldconfig(8) at 

/var/run/ld.so.hints to quickly find correct library
•Generated at every boot



The role of ld.so
•Cached results of ldconfig(8) at 

/var/run/ld.so.hints to quickly find correct library
•Generated at every boot
• setuid programs only use ld.so.hints



The role of ld.so
•Cached results of ldconfig(8) at 

/var/run/ld.so.hints to quickly find correct library
•Generated at every boot
• setuid programs only use ld.so.hints
• Bad if hints file is empty/outdated 



The role of ld.so
•Cached results of ldconfig(8) at 

/var/run/ld.so.hints to quickly find correct library
•Generated at every boot
• setuid programs only use ld.so.hints
• Bad if hints file is empty/outdated 
•Double check ldconfig(8) manpage



The role of ld.so



The role of ld.so
• Shared libraries are ELF  

just like binaries, but  
without main()



The role of ld.so
• Shared libraries are ELF  

just like binaries, but  
without main()

• So alike, that programs  
can dlopen() other programs



The role of ld.so
• Shared libraries are ELF  

just like binaries, but  
without main()

• So alike, that programs  
can dlopen() other programs

• Some programs even  
dlopen() themselves!



The role of ld.so
• Shared libraries are ELF  

just like binaries, but  
without main()

• So alike, that programs  
can dlopen() other programs

• Some programs even  
dlopen() themselves!



The role of ld.so



The role of ld.so
•More stages while your program is starting and 

ending



The role of ld.so
•More stages while your program is starting and 

ending
• atexit(3) might be commonly known



The role of ld.so
•More stages while your program is starting and 

ending
• atexit(3) might be commonly known
• Each call to atexit() registers a subroutine to 

call before real exit. They run in reverse order.



The role of ld.so



The role of ld.so
•More stages while your program is starting and 

ending



The role of ld.so
•More stages while your program is starting and 

ending
• constructor and destructor stages.



The role of ld.so
•More stages while your program is starting and 

ending
• constructor and destructor stages.
• destructor runs after your atexit() calls



The role of ld.so
•More stages while your program is starting and 

ending
• constructor and destructor stages.
• destructor runs after your atexit() calls
• void __attribute__ ((constructor)) 

myconstructor() { … } 



The role of ld.so



The role of ld.so
•More stages while your program is starting and 

ending



The role of ld.so
•More stages while your program is starting and 

ending
• There are also preinit, init and fini stages.



The role of ld.so
•More stages while your program is starting and 

ending
• There are also preinit, init and fini stages.
• In my obsd tests, only preinit worked, __init 

and __fini already defined in libc. 



The role of ld.so
•More stages while your program is starting and 

ending
• There are also preinit, init and fini stages.
• In my obsd tests, only preinit worked, __init 

and __fini already defined in libc. 
• --allow-multiple-definition “solves” this



The role of ld.so
•More stages while your program is starting and 

ending
• There are also preinit, init and fini stages.
• In my obsd tests, only preinit worked, __init 

and __fini already defined in libc. 
• --allow-multiple-definition “solves” this
• The final order of all hooks is:



The role of ld.so



The role of ld.so
•More stages while your program is starting and ending



The role of ld.so
•More stages while your program is starting and ending
• preinit



The role of ld.so
•More stages while your program is starting and ending
• preinit
• constructor



The role of ld.so
•More stages while your program is starting and ending
• preinit
• constructor
• init



The role of ld.so
•More stages while your program is starting and ending
• preinit
• constructor
• init
•main



The role of ld.so
•More stages while your program is starting and ending
• preinit
• constructor
• init
•main
• atexit



The role of ld.so
•More stages while your program is starting and ending
• preinit
• constructor
• init
•main
• atexit
• fini



The role of ld.so
•More stages while your program is starting and ending
• preinit
• constructor
• init
•main
• atexit
• fini
• destructor



The role of ld.so



The role of ld.so
• Even more stages while your program is starting 

and ending



The role of ld.so
• Even more stages while your program is starting 

and ending
• constructor 

This one has 65536 possible levels



The role of ld.so
• Even more stages while your program is starting 

and ending
• constructor 

This one has 65536 possible levels
• Levels <=100 reserved for not-you



GOT / PLT



GOT / PLT
•GOT - Global Offset Table



GOT / PLT
•GOT - Global Offset Table
• A list of relative offsets into segments so 

relocated programs can find program-internal 
addresses



GOT / PLT
•GOT - Global Offset Table
• A list of relative offsets into segments so 

relocated programs can find program-internal 
addresses

•Needed by static binaries too



GOT / PLT
•GOT - Global Offset Table
• A list of relative offsets into segments so 

relocated programs can find program-internal 
addresses

•Needed by static binaries too
•How you divide BSS into the ints, longs, structs 

the linker placed there



GOT / PLT



GOT / PLT
• PLT - Program Link Table



GOT / PLT
• PLT - Program Link Table
• List of jumps to shared library symbols like 

printf() and puts()



GOT / PLT
• PLT - Program Link Table
• List of jumps to shared library symbols like 

printf() and puts()
•Often lazy resolving - Wacky code rewrite



GOT / PLT
• PLT - Program Link Table
• List of jumps to shared library symbols like 

printf() and puts()
•Often lazy resolving - Wacky code rewrite
• Requires some tricks due to code reentrancy



GOT / PLT
• PLT - Program Link Table
• List of jumps to shared library symbols like 

printf() and puts()
•Often lazy resolving - Wacky code rewrite
• Requires some tricks due to code reentrancy
• Threads, signal handlers and so on



GOT / PLT



GOT / PLT
• PLT - Program Link Table



GOT / PLT
• PLT - Program Link Table
• Each jump subsection contains NOPs around 

the actual call to have ld.so resolve the current 
symbol



GOT / PLT
• PLT - Program Link Table
• Each jump subsection contains NOPs around 

the actual call to have ld.so resolve the current 
symbol

• Filled in backwards, overwriting the jmp 
instruction last



GOT / PLT
• PLT - Program Link Table
• Each jump subsection contains NOPs around 

the actual call to have ld.so resolve the current 
symbol

• Filled in backwards, overwriting the jmp 
instruction last

• If we race, symbol resolves happen twice. 
Ok worst case



GOT / PLT



GOT / PLT
• PLT - Program Link Table



GOT / PLT
• PLT - Program Link Table
• Program calls printf() -> ld.so turns this into



GOT / PLT
• PLT - Program Link Table
• Program calls printf() -> ld.so turns this into
•Call our own PLT Entry #2



GOT / PLT
• PLT - Program Link Table
• Program calls printf() -> ld.so turns this into
•Call our own PLT Entry #2
• First time, resolve entry #2 to pointer to where 

printf() is defined in libc GOT then call it



GOT / PLT
• PLT - Program Link Table
• Program calls printf() -> ld.so turns this into
•Call our own PLT Entry #2
• First time, resolve entry #2 to pointer to where 

printf() is defined in libc GOT then call it
•Change PLT entry #2 to point to libc GOT for 

printf()



GOT / PLT
• PLT - Program Link Table
• Program calls printf() -> ld.so turns this into
•Call our own PLT Entry #2
• First time, resolve entry #2 to pointer to where 

printf() is defined in libc GOT then call it
•Change PLT entry #2 to point to libc GOT for 

printf()
•Next call(s) go directly from PLT#2 to libc-GOT



OpenBSD recent changes



OpenBSD recent changes
• kbind - ok not very recent



OpenBSD recent changes
• kbind - ok not very recent
• libc only syscalls



OpenBSD recent changes
• kbind - ok not very recent
• libc only syscalls
•mimmutable



OpenBSD recent changes
• kbind - ok not very recent
• libc only syscalls
•mimmutable
• pinsyscall



OpenBSD recent changes
• kbind - ok not very recent
• libc only syscalls
•mimmutable
• pinsyscall
• xonly code regions



OpenBSD recent changes



OpenBSD recent changes
• kbind(2)



OpenBSD recent changes
• kbind(2)
• Allows for lazy symbol bindings



OpenBSD recent changes
• kbind(2)
• Allows for lazy symbol bindings
•OpenBSD would prefer non-lazy to keep PLT 

readonly, kbind(2) works around RO.



OpenBSD recent changes
• kbind(2)
• Allows for lazy symbol bindings
•OpenBSD would prefer non-lazy to keep PLT 

readonly, kbind(2) works around RO.
• First use from ld.so registers location and a 

cookie, later uses must come from same place 
and with same cookie



OpenBSD recent changes



OpenBSD recent changes
• Syscalls via libc only



OpenBSD recent changes
• Syscalls via libc only
• Kernel enforces syscalls from designated 

locations



OpenBSD recent changes
• Syscalls via libc only
• Kernel enforces syscalls from designated 

locations
• Previously, syscalls could not be made from 

writeable memory



OpenBSD recent changes
• Syscalls via libc only
• Kernel enforces syscalls from designated 

locations
• Previously, syscalls could not be made from 

writeable memory
• Requires specific support from golang 

compiler



OpenBSD recent changes



OpenBSD recent changes
•mimmutable(2)



OpenBSD recent changes
•mimmutable(2)
•Makes sure the memory range permissions 

can never change.



OpenBSD recent changes
•mimmutable(2)
•Makes sure the memory range permissions 

can never change.
• The memory may change, but not the 

permissions (RW -> RO exception possible)



OpenBSD recent changes
•mimmutable(2)
•Makes sure the memory range permissions 

can never change.
• The memory may change, but not the 

permissions (RW -> RO exception possible)
• Lots of ELF sections in libc, ld.so and crt0.o 

becomes immutable by default



OpenBSD recent changes



OpenBSD recent changes
• pinsyscall(2)



OpenBSD recent changes
• pinsyscall(2)
•Marks the only spot where the pinned syscalls 

can be made from - sigabort if wrong



OpenBSD recent changes
• pinsyscall(2)
•Marks the only spot where the pinned syscalls 

can be made from - sigabort if wrong
•Currently (7.3) only execve()



OpenBSD recent changes



OpenBSD recent changes
• Xonly code regions



OpenBSD recent changes
• Xonly code regions
•With some trickery, one can check/detect 

reads made while executing -vs- reading code 
segment



OpenBSD recent changes
• Xonly code regions
•With some trickery, one can check/detect 

reads made while executing -vs- reading code 
segment

•Have to move data out from inline asm code



OpenBSD recent changes
• Xonly code regions
•With some trickery, one can check/detect 

reads made while executing -vs- reading code 
segment

•Have to move data out from inline asm code
• Potential defense against Blind ROP



OpenSSH - CVE-2023-38408



OpenSSH - CVE-2023-38408
•Only works if you use ssh-agent and “ssh -A evil-

host” intending to jump to dest-host instead of 
“ssh -J evil-host dest-host”



OpenSSH - CVE-2023-38408
•Only works if you use ssh-agent and “ssh -A evil-

host” intending to jump to dest-host instead of 
“ssh -J evil-host dest-host”

• The “evil-host” gets to pretend that dest-host wants 
you to try huge amount of auth protocols



OpenSSH - CVE-2023-38408
•Only works if you use ssh-agent and “ssh -A evil-

host” intending to jump to dest-host instead of 
“ssh -J evil-host dest-host”

• The “evil-host” gets to pretend that dest-host wants 
you to try huge amount of auth protocols

• Each protocol will mean ssh-agent uses dlopen() to 
load library appropriate for the auth tried



OpenSSH - CVE-2023-38408
•Only works if you use ssh-agent and “ssh -A evil-

host” intending to jump to dest-host instead of 
“ssh -J evil-host dest-host”

• The “evil-host” gets to pretend that dest-host wants 
you to try huge amount of auth protocols

• Each protocol will mean ssh-agent uses dlopen() to 
load library appropriate for the auth tried

• Load bad libs -> *boom*



OpenSSH - CVE-2023-38408
•Only works if you use ssh-agent and “ssh -A evil-

host” intending to jump to dest-host instead of 
“ssh -J evil-host dest-host”

• The “evil-host” gets to pretend that dest-host wants 
you to try huge amount of auth protocols

• Each protocol will mean ssh-agent uses dlopen() to 
load library appropriate for the auth tried

• Load bad libs -> *boom*
• Linux seemingly have tons of bad libs



ELF links 

https://s3.inet6.se/links.html



Questions?


