

im·​mu·​ta·​ble​FreeBSD ĭ-myoo� ′tə-bəl
Experiments building & running immutable infra

Not subject or susceptible to change.
 Coimbra EuroBSDcon 2023

 2

~ whoami

 dch@skunkwerks.at

@dch@bsd.network

 https://people.FreeBSD.org/~dch

 Automater of Things

 Lazy Ops Engineer

https://people.FreeBSD.org/~dch

 4

Principles
“idempotent, repeatable, composable, loosely
coupled”

FreeBSD is ideally suited to immutable infrastructure, with powerful primitives
– jails, zfs, boot environments
– poudriere for building complete systems

minimise​runtime​tooling​and​ops​effort

– preferring up-front dev effort

– let the network do the heavy lifting

– minimise the moving parts

– automate the deploys

– assume fungible hardware

 5

Plumbing

● Anycast, BGP
● Load balancers
● Mesh VPN and DNS

 6

Networking – it just works™

● AnyCast or GeoDNS + healthcheck failover
● 3 global regions (EU, Americas, Asia)
● ISP router provides iBGP within region to servers
● Servers run haproxy to jails
● Jails are linked via ipv6 mesh network

 7

BGP using bird

 8

The Load Balancer
● Present on each server
● Starts before bird BGP announcer
● sends traffic to nearest “up” jail even if not local
● haproxy has awesome lua integration

 9

Load Balancers have 2 sides

 10

Jails

● How to find the jails
● Immutability
● Deployment

 11

Exposing Jail State to LBs

 12

Apps

● Immutability
● Packaging
● Deployment

 13

Immutable Apps – a Study

● 2 web servers tested
● 8 databases tested
● many custom applications

● a general approach emerges

 14

Immutable Apps – a Study

● Databases are much trickier
● More mutable state
● Harder to load balance
● Lots of zfs tricks

– FoundationDB, CouchDB, MariaDB, Postgresql,
Graylog, MongoDB, ElasticSearch, OpenSearch

 15

Jail & split (im)mutable data

 16

Immutable Apps – zfs magic
● Use jailed zfs nested containers

● Use .zfs/snapshot/$NAME for backups

 17

Immutable Tricks – Summary

● finagle all the config files
● unix sockets & softlinks for /tmp, /var/run etc
● move syslog to network service
● nested zfs datasets for custom perf & tuning
● zfs diff to find mutable locations
● zfs read-only once complete

 18

Container Deploys

 19

Deploying Containers

● App source code in git repo
● Push code → generate HMAC signed webhook
● haproxy further restricts webhook origin via mTLS & route protection
● Webhook daemon checks HMAC

– runs CI script and builds new package
– requests pkg-based deploy

 20

HMAC signed Webhooks for CI

 21

Bonus: Arbitrary plays via Webhook

 22

Using pkg-create(8)

 23

pkg-create(8) and pkg-sign(8)
$ pkg create --verbose \
--root-dir ${STAGING} \
--manifest ${MANIFEST} \
--out-dir ${BUILD}
...

cp ${ARTEFACT} /ci/var/db/ci/pkg/

pkg repo -o \
/ci/var/db/ci/pkg \

 /ci/var/db/ci/pkg \
 /usr/local/etc/ssl/keys/pkg.key

…

jexec $JAIL pkg upgrade -y $foo

 24

Apps Summary

● Immutable containerised apps via
– zfs readonly clone of template “/” for jail
– nullfs RO mounts for config and www data
– zfs nested datasets for mutable databases
– syslog-ng outside jail
– no internal daemons (syslog, cron, ntp ..)

● Immutable deploys via webhooks and pkg-* tools
● Load balancers and networks make this invisible

 25

Immutable Servers

● ZFS Boot Envs
● Poudriere
● SyncBE deploy
● tarfs(8)

 26

ZFS Boot Envs
● clone a snapshot of your “/”
● mount it, and edit or update it
● test it in a jail
● activate it and reboot
● woops, roll back, phew!
● app data is separate and intact

● uses zfs properties:
– zroot/ROOT/…
– canmount=noauto
– mountpoint=/

● uses zpool property:
– bootfs=zroot/ROOT/yolo

 27

Loader Prompt – IPMI supported

 28

poudriere-(devel)

● Build FreeBSD from src
● Build packages from ports tree
● Great doc coverage on wiki
● Build deployable images in many formats

– memstick, iso
– zfs dataset
– tarball

 29

Inputs

● git source & ports tree
● overlay directory for images

– boot/loader.conf

– etc/fstab

– etc/rc.conf.d/sshd

– etc/resolv.conf

– usr/local/bin/sync-be **

– usr/local/etc/pkg/repos/FreeBSD.conf

● a list of packages we want to build
– sysutils/spiped

– sysutils/tmux

– ...

 30

Usage – OS + Package Build

poudriere jail -c -j 13_2_builder_amd64 \
-v releng/13.2 \

 -m git+https \
 -b -K GENERIC

poudriere bulk -j 13_2_builder_amd64 \
 -f ./packages.lst

 31

Usage – Image Build

poudriere image -t zfs+send+be \
 -j 13_2_builder_amd64 \
 -f ./packages.lst \
 -s 4G \
 -h '' \
 -o /usr/local/poudriere/images/ \
 -c overlay \
 -n ${IMAGE}

 32

Server Deploys

 33

Deploy – curl → BE
bectl list

BE Active Mountpoint Space Created

13.1-RELEASE_2023-03-21_152313 - - 836K2023-03-21 15:23

default NR / 2.24G 2023-03-21 13:49

curl -#L https://pkg/images/be202303262144.be.zfs \

| /usr/local/bin/sync-be 13.2-RELEASE /etc/syncbe.conf

using config file: /etc/syncbe.conf

receiving full stream of zroot.356600197/ROOT/default@202303262144 \

into zroot/ROOT/13.2-RELEASE@202303211523

############### 70.1%

...

received 1.77G stream in 35 seconds (51.7M/sec)

...

 34

Config Hacking

● Same tricks as usual
– softlinking mutable dirs out into a separate location
– read-only zfs datasets
– unix sockets everywhere, or network services
– nullfs mounts to clean things up

● Works for Appliances, less for Generic Servers
● Dammit.

 35

Enter sync-be

● Klara Systems tool
– creates a new boot env
– from your stdin-supplied zfs
– mounts it temporarily
– transfers in your local /etc/ /usr/local/* changes
– unmounts the BE
– temporarily activates it

 36

Deploy – pristine BE → existing state
…
copying boot/loader.conf to /tmp/QilKale4/boot/loader.conf

copying boot/loader.conf.d to /tmp/QilKale4/boot/loader.conf.d

copying etc/login.conf.db to /tmp/QilKale4/etc/login.conf.db

copying etc/pwd.db to /tmp/QilKale4/etc/pwd.db

copying etc/spwd.db to /tmp/QilKale4/etc/spwd.db

...

copying root to /tmp/QilKale4/root

zfs bootenv is successfully written

ready for reboot!

reboot

 37

tarfs(8)

● Mount a tarball as a (readonly) filesystem
● Can be jailed & nullfs-mounted
● Built by Klara Systems and Juniper Networks
● Coming in 14.0-RELEASE
● May not be as fast as other filesystems yet
● Only supports plain tarball, or tar+zstd only

 38

tarfs(8) in action

unxz < /dl/13.2-RELEASE-arm64-aarch64/base.txz \
 > 13.2-RELEASE.tar

mkdir jail

mount -t tarfs 13.2-RELEASE.tar jail

mount -t devfs devfs jail/dev

mount -t tmpfs tmpfs jail/tmp

jail -cv name=tar path=jail command=/bin/sh

jail_set(JAIL_CREATE) persist name=tar path=jail

created

run command in jail: /bin/sh

 39

tarfs(8) in action

… run command in jail: /bin/sh

mkdir /coimbra

mkdir: /: No such file or directory

df -h / /tmp /dev

Filesystem Size Used Avail Capacity Mounted on

13.2-RELEASE.tar 929M 929M 0B 100% /

tmpfs 20G 4.0K 20G 0% [restricted]

devfs 1.0K 0B 1.0K 0% [restricted]

#

 40

Credits & Thanks

● malloc(questions[])

● free(&dave)

● madvise(*social)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

