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Principles
“idempotent, repeatable, composable, loosely 
coupled”

FreeBSD is ideally suited to immutable infrastructure, with powerful primitives
– jails, zfs, boot environments
– poudriere for building complete systems

minimise​runtime​tooling​and​ops​effort

– preferring up-front dev effort

– let the network do the heavy lifting

– minimise the moving parts

– automate the deploys

– assume fungible hardware
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Plumbing

● Anycast, BGP
● Load balancers
● Mesh VPN and DNS
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Networking – it just works™ 

● AnyCast or GeoDNS + healthcheck failover
● 3 global regions (EU, Americas, Asia)
● ISP router provides iBGP within region to servers
● Servers run haproxy to jails
● Jails are linked via ipv6 mesh network
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BGP using bird
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The Load Balancer
● Present on each server
● Starts before bird BGP announcer
● sends traffic to nearest “up” jail even if not local
● haproxy has awesome lua integration 
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Load Balancers have 2 sides
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Jails

● How to find the jails
● Immutability
● Deployment
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Exposing Jail State to LBs
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Apps

● Immutability
● Packaging
● Deployment
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Immutable Apps – a Study

● 2 web servers tested
● 8 databases tested
● many custom applications

● a general approach emerges
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Immutable Apps – a Study

● Databases are much trickier
● More mutable state
● Harder to load balance
● Lots of zfs tricks

– FoundationDB, CouchDB, MariaDB, Postgresql, 
Graylog, MongoDB, ElasticSearch, OpenSearch
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Jail & split (im)mutable data
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Immutable Apps – zfs magic
● Use jailed zfs nested containers

● Use .zfs/snapshot/$NAME for backups
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Immutable Tricks – Summary

● finagle all the config files
● unix sockets & softlinks for /tmp, /var/run etc
● move syslog to network service
● nested zfs datasets for custom perf & tuning
● zfs diff to find mutable locations
● zfs read-only once complete
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Container Deploys



  19

Deploying Containers

● App source code in git repo
● Push code → generate HMAC signed webhook
● haproxy further restricts webhook origin via mTLS & route protection
● Webhook daemon checks HMAC

– runs CI script and builds new package
– requests pkg-based deploy 
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HMAC signed Webhooks for CI
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Bonus: Arbitrary plays via Webhook
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Using pkg-create(8)
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pkg-create(8) and pkg-sign(8)
$ pkg create --verbose \
--root-dir ${STAGING} \
--manifest ${MANIFEST} \
--out-dir ${BUILD}
...

# cp ${ARTEFACT} /ci/var/db/ci/pkg/

# pkg repo -o \
/ci/var/db/ci/pkg \

   /ci/var/db/ci/pkg \
   /usr/local/etc/ssl/keys/pkg.key

…

# jexec $JAIL pkg upgrade -y $foo



  24

Apps Summary

● Immutable containerised apps via
– zfs readonly clone of template “/” for jail 
– nullfs RO mounts for config and www data
– zfs nested datasets for mutable databases
– syslog-ng outside jail
– no internal daemons (syslog, cron, ntp ..)

● Immutable deploys via webhooks and pkg-* tools
● Load balancers and networks make this invisible
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Immutable Servers

● ZFS Boot Envs
● Poudriere
● SyncBE deploy
● tarfs(8)
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ZFS Boot Envs
● clone a snapshot of your “/”
● mount it, and edit or update it
● test it in a jail
● activate it and reboot
● woops, roll back, phew!
● app data is separate and intact

● uses zfs properties:
– zroot/ROOT/…
– canmount=noauto
– mountpoint=/

● uses zpool property:
– bootfs=zroot/ROOT/yolo
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Loader Prompt – IPMI supported
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poudriere-(devel)

● Build FreeBSD from src
● Build packages from ports tree
● Great doc coverage on wiki
● Build deployable images in many formats

– memstick, iso
– zfs dataset
– tarball
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Inputs

● git source & ports tree
● overlay directory for images

– boot/loader.conf

– etc/fstab

– etc/rc.conf.d/sshd

– etc/resolv.conf

– usr/local/bin/sync-be ** 

– usr/local/etc/pkg/repos/FreeBSD.conf

● a list of packages we want to build
– sysutils/spiped

– sysutils/tmux

– ...
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Usage – OS + Package Build

# poudriere jail -c -j 13_2_builder_amd64 \
-v releng/13.2 \

  -m git+https \
  -b -K GENERIC

# poudriere bulk -j 13_2_builder_amd64 \
  -f ./packages.lst
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Usage – Image Build

# poudriere image -t zfs+send+be \
  -j 13_2_builder_amd64 \
  -f ./packages.lst \
  -s 4G \
  -h '' \
  -o /usr/local/poudriere/images/ \
  -c overlay \
  -n ${IMAGE}
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Server Deploys
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Deploy – curl → BE
# bectl list

BE Active Mountpoint Space Created

13.1-RELEASE_2023-03-21_152313 - - 836K2023-03-21 15:23

default NR / 2.24G 2023-03-21 13:49

# curl -#L https://pkg/images/be202303262144.be.zfs \

| /usr/local/bin/sync-be 13.2-RELEASE /etc/syncbe.conf

using config file: /etc/syncbe.conf

receiving full stream of zroot.356600197/ROOT/default@202303262144 \

into zroot/ROOT/13.2-RELEASE@202303211523

############### 70.1%

...

received 1.77G stream in 35 seconds (51.7M/sec)

...
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Config Hacking

● Same tricks as usual
– softlinking mutable dirs out into a separate location
– read-only zfs datasets
– unix sockets everywhere, or network services
– nullfs mounts to clean things up

● Works for Appliances, less for Generic Servers
● Dammit.
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Enter sync-be

● Klara Systems tool
– creates a new boot env
– from your stdin-supplied zfs
– mounts it temporarily
– transfers in your local /etc/ /usr/local/* changes
– unmounts the BE
– temporarily activates it
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Deploy – pristine BE → existing state
…
copying boot/loader.conf to /tmp/QilKale4/boot/loader.conf

copying boot/loader.conf.d to /tmp/QilKale4/boot/loader.conf.d

copying etc/login.conf.db to /tmp/QilKale4/etc/login.conf.db

copying etc/pwd.db to /tmp/QilKale4/etc/pwd.db

copying etc/spwd.db to /tmp/QilKale4/etc/spwd.db

...

copying root to /tmp/QilKale4/root

zfs bootenv is successfully written

ready for reboot!

# reboot
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tarfs(8)

● Mount a tarball as a (readonly) filesystem
● Can be jailed & nullfs-mounted
● Built by Klara Systems and Juniper Networks
● Coming in 14.0-RELEASE
● May not be as fast as other filesystems yet
● Only supports plain tarball, or tar+zstd only
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tarfs(8) in action 

# unxz < /dl/13.2-RELEASE-arm64-aarch64/base.txz \
   > 13.2-RELEASE.tar

# mkdir jail

# mount -t tarfs 13.2-RELEASE.tar jail

# mount -t devfs devfs jail/dev

# mount -t tmpfs tmpfs jail/tmp

# jail -cv name=tar path=jail command=/bin/sh

jail_set(JAIL_CREATE) persist name=tar path=jail

created

run command in jail: /bin/sh
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tarfs(8) in action 

… run command in jail: /bin/sh

# mkdir /coimbra

mkdir: /: No such file or directory

# df -h / /tmp /dev

Filesystem          Size    Used   Avail Capacity  Mounted on

13.2-RELEASE.tar    929M    929M      0B   100%    /

tmpfs                20G    4.0K     20G     0%    [restricted]

devfs               1.0K      0B    1.0K     0%    [restricted]

#
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Credits & Thanks

● malloc(questions[])

● free(&dave)

● madvise(*social)
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