
Arbitrary Instruction Tracing with DTrace

Christos Margiolis
christos@FreeBSD.org

September 17, 2023
EuroBSDCon 2023 — Coimbra, Portugal

Who?

▶ Christos Margiolis <christos@FreeBSD.org>

▶ FreeBSD contributor since 2020, src committer since 2023.

▶ Have worked mainly on DTrace.

▶ Terrible at introductions.

DTrace quick background

▶ Dynamic tracing framework.

▶ Originated in Solaris in 2005.

▶ Ability to observe kernel behavior (e.g function calls) in
real-time.

▶ Provider: Module that performs a particular instrumentation
in the kernel.

▶ Probe: Specific point of instrumentation.

▶ D language.

▶ https://illumos.org/books/dtrace

https://illumos.org/books/dtrace

The FBT provider

▶ Trace the entry and return points of a kernel function.

▶ Cannot trace specific instructions and inline functions.

dtrace -n ’fbt::malloc:entry {printf("%s", execname);}’

dtrace: description ’fbt::malloc:entry ’ matched 1 probe

CPU ID FUNCTION:NAME

3 30654 malloc:entry dtrace

0 30654 malloc:entry pkg

1 30654 malloc:entry Xorg

3 30654 malloc:entry firefox

2 30654 malloc:entry zfskern

3 30654 malloc:entry kernel

^C

The kinst provider

▶ Inspired by FBT.

▶ Trace arbitrary machine instructions in a kernel function.

▶ Can trace inline functions.

▶ More fine-grained tracing (specific if statements, loops,
branches, ...). Requires good C-to-Assembly translation skills.

▶ Available on amd64, arm64 and riscv.

▶ In the future: build higher-level tooling, detect and put return
probes on tail-call optimized functions.

▶ sys/cddl/dev/kinst/

kinst::<function>:

dtrace -n ’kinst::amd64_syscall:’

dtrace: description ’kinst::amd64_syscall:’ matched 458

probes

CPU ID FUNCTION:NAME

2 80676 amd64_syscall:323

2 80677 amd64_syscall:326

2 80678 amd64_syscall:334

2 80679 amd64_syscall:339

2 80680 amd64_syscall:345

2 80681 amd64_syscall:353

^C

kinst::<function>:<instruction>

kgdb

(kgdb) disas /r vm_fault

Dump of assembler code for function vm_fault:

0xffffffff80876df0 <+0>: 55 push %rbp

0xffffffff80876df1 <+1>: 48 89 e5 mov %

rsp,%rbp

0xffffffff80876df4 <+4>: 41 57 push %r15

dtrace -n ’kinst::vm_fault:4 {printf("%#x", regs[R_RSI])

;}’

2 81500 vm_fault:4 0x827c56000

2 81500 vm_fault:4 0x827878000

2 81500 vm_fault:4 0x1fab9bef0000

2 81500 vm_fault:4 0xe16cf749000

0 81500 vm_fault:4 0x13587c366000

^C

kinst::<inline_func>:<entry|return>

dtrace -n ’kinst::critical_enter:return’

dtrace: description ’kinst::critical_enter:return’ matched

130 probes

CPU ID FUNCTION:NAME

1 71024 spinlock_enter:53

0 71024 spinlock_enter:53

1 70992 uma_zalloc_arg:49

1 70925 malloc_type_zone_allocated:21

1 70994 uma_zfree_arg:365

1 70924 malloc_type_freed:21

0 71024 spinlock_enter:53

0 70947 _epoch_enter_preempt:122

0 70949 _epoch_exit_preempt:28

0 71024 spinlock_enter:53

0 71024 spinlock_enter:53

0 70947 _epoch_enter_preempt:122

0 70949 _epoch_exit_preempt:28

^C

High-level ideas

▶ How are instructions instrumented?

▶ Architecture-dependent code.

▶ Inline function tracing.

Instruction instrumentation

▶ Probe information is passed from dtrace(1) to libdtrace to
kinst(4) using a character device file in /dev/dtrace/kinst.

▶ kinst disassembles the function and creates probes for each of
the target instructions.

▶ The original instruction is overwritten with a breakpoint
instruction.

▶ When the CPU hits the breakpoint, we jump into
kinst_invop() through the trap handler.

▶ kinst decides if the instruction is to be emulated or executed
in a trampoline.

▶ Trace the instruction and continue execution.

Instruction instrumentation

func

instr

instr ->

breakpoint

instr

...

...

instr ->

breakpoint

instr

dtrace(1)

command

libdtrace: ioctl

with probe
info to /dev/

dtrace/kinst

kinst(4):
create probe(s),

overwrite
instruction(s)

with breakpoints

breakpoint handler dtrace_invop() kinst_invop()

breakpoint handler dtrace_invop() kinst_invop()

Trampoline: Overview

▶ Emulating every single instruction for each architecture is
tedious and error prone.

▶ Target instruction is copied there and execution is transferred
to the trampoline manually.

▶ How do we return back?

Trampoline: Under the hood

▶ Executable block of memory.

▶ Memory ”chunks” of size PAGE_SIZE stored in a TAILQ

▶ vm_map_find(9) with VM_PROT_EXECUTE, vm_map_remove(9),
kmem_back(9), kmem_unback(9), malloc(9).

▶ Allocated above KERNBASE (amd64), or
VM_MIN_KERNEL_ADDRESS (rest).

▶ Logically divided into individual trampolines using BITSET(9).

▶ kinst_trampoline_alloc() finds and returns the next free
trampoline.

Trampoline: Under the hood

trampchunk

tramp

...

tramp

instruction

breakpoint/jmp

trampchunk

...

PAGE_SIZE

KINST_TRAMP_SIZE

▶ amd64: Per-thread and per-CPU trampolines that are
rewritten upon every instrumentation. To be deprecated.

▶ arm64 and riscv: Per-probe trampolines.

Trampoline: amd64 control flow (to be deprecated)

instr1 (breakpoint) instr2

trap handler

kinst_invop()

relocate pc-
relative instruction
offsets, set pc
to trampoline

trampoline
[instr, jmp]

The per-thread/per-CPU trampolines are rewritten upon every
instrumentation. Will be replaced by the arm64/riscv mechanism
and use per-probe trampolines to avoid race bugs.

Trampoline: arm64/riscv control flow

instr1 (breakpoint) instr2

trap handler

kinst_invop()

KINST_STATE_FIRED

restore state and
interrupts, set pc
to next instruction

save state, disable
interrupts, set

pc to trampoline

trampoline [instr,
breakpoint]

yesno

Synchronization is done through a DPCPU(9) kinst_cpu_state

structure.

Caveats

▶ amd64
▶ The ISA is... complicated. Instruction parsing is tedious.
▶ RIP-relative instructions have to have their displacements

re-encoded to be relative to the trampoline in order to be
executed in a trampoline.

▶ call instructions have to be emulated in assembly (see
bp_call label in
sys/cddl/dev/dtrace/amd64/dtrace_asm.S).

▶ arm64, riscv
▶ Unlike amd64, encoding trampoline-relative offsets for

PC-relative instructions is not possible in a single instruction,
so all PC-relative instructions have to be emulated in
kinst_emulate().

▶ Some functions and instructions are unsafe to trace (listed in
man page).

Inline function tracing

▶ Syntax: kinst::<inline_func>:<entry>

▶ All the hard work is done in libdtrace, instead of kinst(4).
▶ Uses the DWARF and ELF standards.

▶ If the function is an inline, libdtrace calculates the function
boundaries and offsets and creates regular kinst probes for
each one of the inline copies found.

▶ If the function is not an inline, the probe is converted to an
FBT one, to avoid code duplication.

▶ Done for each loaded kernel module. Painfully slow...

▶ Can handle nested inline functions.

▶ cddl/contrib/opensolaris/lib/libdtrace/common/dt_sugar

.c

▶ https://margiolis.net/w/dwarf inline/

▶ https://margiolis.net/w/kinst inline/

https://margiolis.net/w/dwarf_inline/
https://margiolis.net/w/kinst_inline/

Inline function tracing

Inline function Non-inline function

kinst::cam_iosched_has_more_trim:entry

{

printf("\t%d\t%s", pid, execname);

}

kinst::cam_iosched_get_trim:13,

kinst::cam_iosched_next_bio:13,

kinst::cam_iosched_schedule:40

{

printf("\t%d\t%s", pid, execname);

}

kinst::malloc:entry

{

exit(0);

}

fbt::malloc:entry

{

exit(0);

}

Inline function tracing: DWARF overview

▶ Debugging information is represented as a tree of entries, one
per compilation unit. The entries correspond to functions,
variables, arguments, etc and each entry has various attributes
(name, location, ...).

▶ Functions that get inlined have an ”inlined” attribute set.

▶ The inline copy entries point to the declaration entry’s offset
and include information about the copy’s lower and upper
boundaries.

Inline function tracing: DWARF overview

Inline function declaration entry:

<1><1dfa144>: Abbrev Number: 94 (DW_TAG_subprogram)

<1dfa145> DW_AT_name : (indirect string)

vfs_freevnodes_dec

<1dfa149> DW_AT_decl_file : 1

<1dfa14a> DW_AT_decl_line : 1447

<1dfa14c> DW_AT_prototyped : 1

<1dfa14c> DW_AT_inline : 1

Inline copy entry:

<3><1dfe45e>: Abbrev Number: 24 (

DW_TAG_inlined_subroutine)

<1dfe45f> DW_AT_abstract_origin: <0x1dfa144>

<1dfe463> DW_AT_low_pc : 0xffffffff80cf701d

<1dfe46b> DW_AT_high_pc : 0x38

<1dfe46f> DW_AT_call_file : 1

<1dfe470> DW_AT_call_line : 3458

<1dfe472> DW_AT_call_column : 5

Inline function tracing: Finding the caller function

▶ Can fetch the upper and lower boundaries of the inline copy
from DWARF.

▶ Need to know which function the inline copy is inlined in and
at what offset, so we can create kinst probes. Done by
scanning ELF symbol tables.

The name of the caller function corresponds to the name of the
symbol satisfying the following condition:

Symlower ≤ Inllower ≤ Inlupper ≤ Symupper

Then, the entry and return* offsets are calculated as:

Entry = Inllower − Symlower

Return = Inlupper − Symlower

* Not exactly that simple...

Acknowledgments

Mark Johnston <markj@FreeBSD.org>

Mitchell Horne <mhorne@FreeBSD.org>

Questions/Suggestions

▶ What feature(s) would you like kinst to have?

▶ Is there a particular use case you want to achieve with kinst?

